
The results obtained can be used for predicting the effective thermal conductivity of 
polydispersed (two-component and multicomponent) granular systems and for developing pro- 
grams for the experimental investigation, monitoring, analysis, and generalization of the 
measurement results. 

NOTATION 

P, porosity of the packing; di, dIi , diii, average particle diameters; rI, rii , riiI, 
average particle radii; %1, %2, %3, %p, thermal conductivities of the grains and the compo- 
nent in the pores; rc, rcl , rc2 , radii of "cuffs"; %eff.III, %eff.II, %eff.I, effective 
thermal conductivities of intermediate fractions and of the entire system, %sk. II, thermal 
conductivity of the skeleton; Yc, Ycl, Yc2, Y~, y2, Y3, Y4, relative radii of element with 
averaged parameters; Vg, Vp, volumes of the grains and the pores; h, ~, height of the micro- 
roughness of the grains and heat flux spreading function (determined by formulas from [2]). 

LITERATURE CITED 

i. L.L. Vasil'ev and S. A. Tanaeva, Thermophysical Properties of Porous Materials [in 
Russian], Nauka i Tekhnika, Minsk (1971). 

2. G.N. Dul'nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite 
Materials [in Russian], Energiya, Leningrad (1974). 

3. S.G. Beveridge and D. P. Haughey, "Axial heat transfer in packed beds. Stagnant beds 
between 20 and 750~ '' Int. J. Heat Mass Transfer, 14, No. 8, 1093-1110 (1971). 

4. G.N. Dul'nev, M. A. Eremeev, and Yu. P. Zarichnyak, "Analysis of heat-transfer pro- 
cesses in granular systems with disordered structure," Inzh.-Fiz., 26, No. 5, 870-878 
(1974). 

5. Preparation of polydispersed structures. United States Patent, cl. 428-601, No. 
4017480 (1977). 

60 No B. Ur'ev, "Strength through disintegration," Khim. Zhizn', No. 3, 63-66 (1979). 

CALCULATION OF THE THER~ CONDUCTIVITY OF HETEROGENEOUS 

MATERIALS WITH DISORDERED STRUCTURE 

V. A. Osipova and Kh. A. Kyaar UDC 536.21 

Structural models for determining the effective transport coefficients for two- 
component heterogeneous materials are analyzed and the results are compared with 
experimental data. 

The problem of calculating the thermal conductivity of heterogeneous materials with the 
help of the theory of generalized conductivity is still an important problem, in spite of 
the progress made [i, 2]. The development of new technologies for obtaining heterogeneous 
materials greatly increases the rang e of possible structures, whose neglect can lead to 
large errors in determining conductivity. 

It should be noted that sometimes this structural dependence of the conductivity is not 
used correctly: secondary properties are chosen as a foundation for the new model and for the 
computed characteristics [3]. The classical starting information for calculating the char- 
acteristics determining the conductivity includes the volume fractions (ml, m2) and coeffi- 
cients of thermal conductivity of the components (~, ~2). We will examine heterogeneous 
materials consisting of two solid components and we will estimate the accuracy that we can 
expect for the computational results. If it is assumed that the coefficients of thermal con- 
ductivity of the components are known to within -10% and the volume fractions to within 5%, 
then a calculation using the equation for a structure with cubic isolated inclusions [2] 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 4, pp. 607-616, October, 
1981. Original article submitted July 30, 1980. 

0022-0841/81/1404-1069507.50 �9 1982 Plenum Publishing Corporation 1069 



[(3r , )  ] = ~2 1 - -F  ml~- m i + l  (1) 
~ - - 1  

where ~ = ~z/~a and the index 1 corresponds to the inclusion component, leads to a mean 
square relative error -13%. It stems only from the errors in the initial data and does not 
take into account the correspondence between the model and the real structure. The validity 
of the computed characteristic is checked by comparing it to experimental data, which are 
also uncertain to an extent. Thus, a deviation of • of the computed results from the 
experimental results can be assumed to be completely permissible. Within the error range, 
the computed characteristics must be checked by comparing them with the statistically repre- 
sentative quantity of experimental data, analyzing first the distribution law for the devia- 
tions. 

The structures of combined (sintered, cast, porous, and nonporous) materials having the 
properties of a mechanical mixture, prepared from quasiisomeric particles (particle sizes 
with respect to coordinates differing by not more than a factor of 2-3), are divided into 
two large groups: with isolated inclusions of one of the components (matrix structure) and 
with interpenetrating components [i, 2, 4]. The fact that uniformity in the types of struc- 
tures indicated over a wide range of variation of volume fractions (concentrations) of com- 
ponents, up to limiting cases, can be achieved by certain technological methods has not been 
excluded. In this respect, most of the computed characteristics are applicable without re- 
strictions over a range of variation in the volume fractions from 0 to i. However, if spe- 
cial techniques for controlling the structure in the technology of preparing the materials 
are not provided, then it is difficult to attain uniformity of a single type of structure 
over the entire range of variation of volume concentration. For low concentration, a matrix 
structure is most probable, while for high concentration, an interpenetrating structure is 
most probable. 

In what follows, we analyze a model and computed characteristics which take into ac- 
count the rearrangement of a structure with isolated inclusions into an interpenetrating 
structure with the volume concentration of the component varying over a wide range. For a 
concentration mz less than 0.125, the structure is viewed as a matrix structure, where cubic 
inclusions of component i, uniformly distributed within component 2, are isolated from one 
another, and the conductivity is calculated using (i). Further increase in concentration 
leads to a change in the type of structure. Connecting bridges with a square transverse 
cross section appear between isolated inclusions and the structure is transformed into an 
interpenetrating one (Fig. i). As the concentration increases, the transverse cross section 
of the bridges increases and for mz = 0.5, the structure is a spatial orthogonal lattice 
with cubic symmetry [5]. The threshold volume concentration (0.125) at which the structure 
begins to rearrange was chosen taking into account the data in [6-8]. 

The theory of percolation, based on mathematical modeling using a computer, as well as 
certain experimental data [8-11], indicate that threshold concentration occurs at mz = 0.15• 
0.03. 

In principle, if there is the required justification, the threshold concentration for 
the appearance of an interpenetrating structure can be related to high or low values of m, 
[9]. Comparison of experimental data with computational results using the model in [II] in- 
dicates the change in the magnitude of the threshold concentration as a function of the ra- 
tios of the component coefficients of conductivity, which is explained by the specific prop- 
erties of the structure. 

We choose, as the unit cell, 1/8 of the unit cube according to syrmnetry conditions. 
The cube is separated by adiabatic surfaces 1--2--8--4, I'--2"~3"--4", Iu--2H--3"~4n , and 
I'"--2"--3""--4" into parts which form 9 branches connected in parallel with 14 thermal 

resistances (Fig. 2) [7]. 

The conductivity of the cell ~, inversely proportional to the total thermal resistance, 

is defined as: 

{ [ ~--1 ]_k_ v [0.5 + A=(v__l)]} ' (2) ~=~= O'75+AZ ~--A(v-- 1) ~+ 1 

where v = ~t/~. 
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Fig. 1 Fig. 2 

Fig. i. Structural model of a heterogeneous material with m > 0.125; i) connect- 
ing bridge; 2) core. 

Fig. 2. Unit cell: 1--2--~4; I'--2"--3'~'; U--2~--3~; U'--2"'--3 ~'- 4"' are auxilia~ 
adiabatic surfaces; A is a dimensionless structural parameter; the arrow indi- 
cates the direction of heat flow Q. 

The dimensionless structural parameter A, which is numerically equal to the length of 
an edge of the square transverse cross section of a connecting bridge, is expressed in terms 
of the vol~e concentration: 

A =  U 2 ( m i - - 0 . 1 2 5 ) / 3 ,  (3) 

where  0 , 1 2 5 ~ n h ~ 0 , 5  and 0 ~ A ~ 0 . 5  . F o r  ml = 0 . 1 2 5 ,  Eq. (2) i s  m o d i f i e d  and i t  can  be  r e -  
presented as (i). If ml = 0.5, then A = 0.5 and the sides of the connecting bridges attain 
the sizes of the core, which corresponds to Dul'nev's structural model [5]. The conductivi- 
ties of models calculated according to [5] and (2) coincide. 

Thus, the structural model and expression (2) relate two basic types of structures (ma- 
trix and interpenetrating) as limiting cases. 

The use of Eq. (2) under conditions when the conductivity of the component in the pore 
space is %i = 0, v = 0 is determined by the maximum porosity 0.875. 

The conductivities of porous materials, for which v = 0, are calculated after simplify- 
ing (2) : 

0 . 1 2 5 ~ m ~ 0 . 5 ,  ~ = ~2 (0.75 - -  A), (4)  

0.5 ~ m~ ~ 0,875, ~ = ~2A *~. (5) 

In (5), the parameter A* is dete~ined with the help of the volume concentration of the con- 
ducting component 2: 

A * =  W2(m2-O.125)/3. (6) 

Equations (i) and (2) are valid for limiting transitions with v = ! and with ml = 0 or 
m~ = i. 

It is well known that, based on one structural model, several computed characteristics, 
differing by the method of linearizing the heat flow paths in the model vol~e, can be pro- 
posed. The most widely used methods invoke separating the unit cell by adiabatic or iso- 
thermal and adiabatic surfaces [i, 12-14]. The computed data under the worst conditions 
(~ = 0) can differ by 3~40%. Comparison of the computed characteristics with the numer~ 
cal solutions [I, 12, 13] pewits choosing the most accurate equation. 

It is shown in [I] that the arithmetic mean value of the conductivities, found with di~ 
ferent methods for linearizing the heat flow paths, agrees with the numerical solution. It 
should be noted that the adequacy of the structural model in this case is not subject to dis- 
cussion and a more accurate equation gives results close to the n~erical calculation ex- 
clusively for a specific model. 
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TABLE i. Distribution of Experimental Data on the Volume Con- 
tent of Components 

Volume content t o-o,1 0,1--0,2 I 0,2--0,3 
interval 

No, of data points [ 68 9 8 1 1 0 3  

0,3--0,4 I 0,4--0,5 

i01 I 46 

TABLE 2. Comparison of Computed and Experimental Data 

Positions in [Ref. for eq. used No. of data ~, % s, % 
Figs. 8, 4 points 

[15l 
[51 

[51, I151 
[401 
[41] 
[30] 
[421 

0 ) ,  (2) 

399 
416 
415 
404 
415 
374 
416 
416 

--30,9 
+ 5,2 

, --13,5 
--26,0 
--16,5 
--18,1 
--12,0 
+ 0,4 

24,0 
18,5 
22,0 
24,0 
27,6 
20,0 
18,3 
17,6 

The data for the numerical calculation for the model in Fig. 2 were obtained for condi- 
tion ~ = 0 using Zaidel's method with the unit cell separated into 4096 nodes. The error 
in the solution, found using Runge's method, does not exceed 5%. The results of the numeri- 
cal solution exceed the data calculated using (2) by 25%. 

Probably, this difference stems from the schematic nature of the model proposed for the 
structure, which is expressed in the cubic shape of particles and in the uniformity of the 
transverse cross section of the bridges over their length. The urge to obtain a simple com- 
putational relation for determining the conductivity of the mixture explains the choice of 
geometry for the model of the structure and the adiabatic method for separating the unit 
cell. 

We compared the computed characteristics for determining the effective conductivity, 
proposed for sintered materials (dense compositions, porous metals, etc.), with experimental 
data, which contained 416 experimental points for the thermal and electrical conductivities 
of 378 substances. Most of the materials were porous and their porosity does not exceed 0.5 
by volume fraction [i, 7, 15-39]. 

The distribution of experimental points over the volume content of the components is 
shown in Table io The nonuniformity of their distribution over the intervals is explained 
by the fact that for low concentrations (<0.i) most computed characteristics for matrix 
structures lead to close results, while for high concentrations (0.4-0.5), especially for 
porous materials, a number of technological problems in preparing the materials appear. If 
we take into account the fact that before the action of external conditions (pressing, sint- 
ering, etc.), the particles in a free-fill state form a substance with a porosity of 0.4- 
0.5, while during pressing the porosity decreases, then the reason for the sharp drop in the 
amount of experimental data in the literature on materials with porosity exceeding 0.4 be- 
comes clear. 

For dense materials, the quantity v falls in the interval 0.05-20, while for porous ma- 

terials, v = 0. 

After analyzing specific conditions for the experiment, experimental data which were ob- 
tained with conductive heat transfer were chosen. The equations obtained by Frey [15], by 
Dul'nev [5], the mean-square value using the equations in [15] and [5], the equations ob- 
tained by Bruggeman [40], Odelevskii for a random mixture [41], Skorokhod [30], by Zarich- 
nyak and Novikov [42], as well as (i) and (2), were used to compute %comp. In the latter 
case, for concentrations of one of the components less than 0.125, Eq. (I) is used, while 
for high concentrations (2) is used. 

The choice of the computational equations stems from the necessity of comparing struc- 
tural models with different characteristics, in order to investigate the possibility of using 
them over a wide range of variation of component concentrations. 
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Fig. 3. Histograms of deviations between experimental and 
computed data: a) [15]; b) [5]; c) [5, 15]; d) [40]; e) 
[41]; f) [30]; g) [42]; h) according to (i) and (2); ni/En i 
is the relative fraction of data in the interval Ri*. 

The equations from [5, 15] and the arithmetic mean value of the results obtained with 
them concern models of the interpenetrating type. The dependences from [40] and (i) were 
obtained for matrix structures. The effective properties are calculated according to [30, 
41, 42] for random mixtures. 

The use of the model for sintered materials [43] is complicated due to the absence of 
the necessary starting information in works where experimental data on the conductivity of 
materials are presented. 

Table 2 compares the computed and experimental data. Some of the changes in the number 
of experimental points for different equations are related to the fact that experimental 
points differing from computed values by more than • were rejected as rough errors. In 
analyzing the data in [30], only porous materials were considered. 

If it is assumed that the normal distribution is valid for deviations of the form R = 
(%exp--%comp)/kexp (in percent) and the symmetry properties are taken into account, then the 
arithmetic-mean of the deviation must equal zero. The shift in the arithmetic mean indi- 
cates the systematic error that affects the computed_data. Table 2 also shows the mean- 
square deviation (s) from the arithmetic mean value R with a confidence probability of 0.67. 

Most of the equations examined lead to results that are too high compared to experi- 
mental data and, in addition, the fact that R differs from zero cannot be explained by the 
random nature of the deviations. Equations (i) and (2), for which the shift in the arith- 
metic mean of the deviations can be assumed to be random with a confidence of 0.95, are ex- 
ceptions. 

The mean-square deviations (s) of the computed data using the equations differ less and 
agree with previously presented estimates of the deviation of experimental and computed re- 
sults. Analyzing the mean-square deviations, it should be noted that the disagreement be- 
tween [5, 42] and (I), (2) with a confidence of 0.95 is accidental (checked according to 
R. Fisher's criterion), while the disagreement between (I) and (2) and other equations is 
not accidental~ 

Figure 3 shows histograms of the deviations of experimental data from the computed data. 
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Fig. 4. Histograms of the deviations between experimental and computed 
data, calculated for different intervals of volume concentration of com- 
ponents ml (ml = 0...0.i; 0.1...0.2; 0.2...0.3; 0.3...0.4; 0.4...0.5). 
The histograms are constructed as in Fig. 3. 

For most equations, the computed data exceed the corresponding experimental results, 
which leads to a large shift in the arithmetic mean deviation toward negative values. There- 
fore, the equations in [5, 30, 40, 41] cannot be recommended for calculating conductivities 
over a wide range of variation of the volume content of components, since they do not take 
into account the corresponding rearrangement of the structure. 

Let us analyze the distribution law for the deviations in different volume content in- 
tervals. For this purpose, we will distribute the experimental data over five groups with 
the following intervals for variation of the volume content: 0-0.i; 0.1-0.2; 0.2-0.3; 0.3- 
0.4; and 0.4-0.5. 

Figure 4 shows histograms of deviations for different computational equations. 

As expected, in the volume content interval for a single component from 0 to 0.2, all 
equations give the smallest mean square deviation of computed data from experimental data, 
but the arithmetic mean is shifted from zero for [5, 15, 41]. For large concentrations, the 
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mean-square deviation increases, especially for [i, 15], and there is a noticeable shift in 
the arithmetic mean value of the deviations for [i, 15, 30, 41, 42]. 

For small concentrations, we can recommend Eq. (i) and [i, 30, 40, 41, and 42], while 
forhighconcentrations, (2) and [5]. The latter is understandable also because for equal 
volume concentrations 0.5 both equations give results that agree exactly. 

In collecting the experimental data, materials with porosity exceeding 0.5 ( ~ 30 data 
points), prepared from quasiisomeric particles, are also grouped together. 

The results of the calculation using the equations systematically exceed the experi- 
mental data. Their disagreement exceeds 100% for 14 materials in calculations according to 
[15, 40], for i0 materials for calculations according to (2) and [5], and for two according 
to [ii]. The best agreement is observed with the use of the equations in [42] (a single de- 
viation by more than 100%), but the shift in the arithmetic mean value of the deviations is 
11.7% with a mean-square deviation of 43.8%. The well-knowndifficulties in preparing highly 
porous bodies give rise to the use of diverse technological methods, which undoubtedly af- 
fect the structure and, as a result, the conductivity of the material. 

Thus, in order to determine the conductivity of nonporous heterogeneous materials with 
a disordered structure over a wide range of variation of the volume content of components 
with v > 0.01, we can recommend Eqs. (i) and (2). For porous bodies (~ = 0), the equations 
indicated provide the required accuracy only for porosities ~ 0.5. 

Calculation of the conductivities of highly porous materials (porosity >0.5) requires 
further investigation and equations must be developed that take into account the specific 
conditions of the technology used to prepare them and their structure. 

NOTATION 

ml and m2, volume concentrations of components 1 and 2; %1 and %2, coefficients of ther- 
mal conductivity of components 1 and 2; %, effective thermal conductivity of a heterogene- 
ous material; ~ = %1/%2, ratio of the coefficients of thermal conductivity of components 1 
and 2; A and A*, dimensionless parameters of the structure; R, deviation of the computed val- 

l 
ue of the thermal conductivity from the experimental value, in %; N=--ER , arithmetic mean 

n 
value of the deviation; n, overall number of experimental points compared; s=~(R--N~2/n , 
mean-square deviation around R; Ri, where i= 0...10%; 0...--10%; 10...20%;--10...--20%, etc., are 
the deviation intervals; ni, number of data points falling into the deviation interval Ri; ni/ 
Eni, relative fraction of data points with deviation R i. 
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EXPERIMENTAL STUDY OF DENSITY AND VISCOSITY OF 

FOUR-COMPONENT LIQUID SYSTEMS 

R| A. Mustafaev and D. K. Ganiev UDC 547o571:532o14.001.5.532o1-133 

Results are offered from an experimental study of the P--V--T functions and vis- 
cosity of multicomponent liquid systems, for which an equation of state is de- 
veloped. 

The basic task of this experimental study was an examination of density and viscosity 
of two- and multicomponent liquid systems, consisting of alcohols and aldehydes of normal 
structures and their isocompounds. These systems in the liquid phase are widely used in 
technological processes. 

Analysis of experimental methods of density study [1-4] demonstrated that for multicom- 
ponent liquid systems the most suitable approach is that of hydrostatic weighing [5, 6]. 

Having determined the compositions of the specimens and the range of state parameters 
at which the experiments were to be performed, we prepared the apparatus, with consideration 
of the polarity of the individual components and the polarity of the solution itself, which 
can significantly affect normal operation of the tracking system sensor if no precausions 
are taken. 

Initially the densities of the following binary solutions were studied: n-butyl alcohol 
(80%)-isobutyl alcohol (20%); n-butyric aldehyde (80%)-isobutyric aldehyde (20%) [7, 8]. Sub- 
sequently, three systems of these two mixtures were prepared: i) 10% first, 90% second; 2) 
60% first, 40% second; 3) 90% first, 10% second. 

The alcohols and aldehydes used to prepare the solutions were purified by the technique 
of [9]o Special care was taken to eliminate water from the alcohols. Purity of the alco- 
hols and aldehydes was 99.96 and 99.97% by weight. The pure aldehydes and alcohols were 
maintained in the dark, and the multicomponent liquid systems were prepared immediately be- 
fore the experiments. 

Density measurements were made over the range 285-500~ at pressures of 0ol-50 MPa, with 
temperature determined by a platinum resistance thermometer. The results obtained are pre- 
sented in Table I. 

Analysis of the experimental results permitted establishment of a generalized equation 
of state for each of the three systems in the form 
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Fizicheskii Zhurnal, Vol. 41, No. 4, pp. 617-620, October, 1981. Original article submitted 
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